Question 17
O Mark this
Find the sum of the first 10 terms of the following geometric sequences:
{3, 6, 12, 24, 48...}
3069
3066
O
3072
O 3075

Respuesta :

Answer:

[tex]S_{10} = 3069[/tex]

Step-by-step explanation:

Given

[tex]Sequence = \{3, 6, 12, 24, 48...\}[/tex]

Required

Determine the sum of the first terms

First, we calculate the common ratio (r)

[tex]r = \frac{T_2}{T_1}[/tex]

[tex]r = \frac{6}{3}[/tex]

[tex]r = 2[/tex]

The required sum is:

[tex]S_n = \frac{a(r^n-1)}{r-1}[/tex]

Substitute 3 for a, 2 for r and 10 for n

[tex]S_{10} = \frac{3(2^{10}-1)}{2-1}[/tex]

[tex]S_{10} = \frac{3(1024-1)}{2-1}[/tex]

[tex]S_{10} = \frac{3(1023)}{2-1}[/tex]

[tex]S_{10} = \frac{3(1023)}{1}[/tex]

[tex]S_{10} = \frac{3069}{1}[/tex]

[tex]S_{10} = 3069[/tex]