Answer:
[tex]S_{10} = 3069[/tex]
Step-by-step explanation:
Given
[tex]Sequence = \{3, 6, 12, 24, 48...\}[/tex]
Required
Determine the sum of the first terms
First, we calculate the common ratio (r)
[tex]r = \frac{T_2}{T_1}[/tex]
[tex]r = \frac{6}{3}[/tex]
[tex]r = 2[/tex]
The required sum is:
[tex]S_n = \frac{a(r^n-1)}{r-1}[/tex]
Substitute 3 for a, 2 for r and 10 for n
[tex]S_{10} = \frac{3(2^{10}-1)}{2-1}[/tex]
[tex]S_{10} = \frac{3(1024-1)}{2-1}[/tex]
[tex]S_{10} = \frac{3(1023)}{2-1}[/tex]
[tex]S_{10} = \frac{3(1023)}{1}[/tex]
[tex]S_{10} = \frac{3069}{1}[/tex]
[tex]S_{10} = 3069[/tex]