Respuesta :
Answer:
[tex]\mathbf{x = 3te ^{-2 \sqrt{2t}}}[/tex]
Explanation:
From the given information concerning the spring-mass system:
Let us apply Hooke law.
Then, we have:
mg = ks
8 = k4
k = 8/4
k = 2
Provided that the mass weighing 8 lbs is attached to a spring.
Then, we can divide it by gravity 32 ft/s².
∴
m = 8/32
m = 1/4 slugs
The medium that offers the damping force [tex]\beta = \sqrt{2}[/tex]
Now, let us set up a differential equation that explains the motion of the spring-mass system.
The general equation is:
[tex]mx '' + \beta x' + kx = 0[/tex]
where;
[tex]m = \dfrac{1}{4}[/tex]
k = 2, and
[tex]\beta = \sqrt{2}[/tex]
Then;
[tex]\dfrac{1}{4}x'' + \sqrt{2} x' + 2x = 0[/tex]
By solving the above equation, the auxiliary equation is:
[tex]m^2 + 4 \sqrt{2} m + 8n = 0[/tex]
Using quadratic formula:
[tex]\dfrac{-b \pm \sqrt{b^2 -4ac}}{2a}[/tex]
[tex]m = \dfrac{-4 \sqrt{2} \pm \sqrt{(4 \sqrt{2})^2 -4(1)(8) }}{2}[/tex]
[tex]m = \dfrac{-4 \sqrt{2} \pm \sqrt{32 -32 }}{2}[/tex]
[tex]m = -2 \sqrt{2}[/tex]
Since this is a repeated root, the solution to their differential equation took the form.
[tex]x_c = c_1 e^{mt} + c_2 t e^{mt}[/tex]
[tex]x_c = c_1 e^{-2\sqrt{2} t} + c_2 t e^{-2\sqrt{2} t}[/tex]
From the initial condition.
At equilibrium position where the mass is being from:
x(0) = 0
Also, at the downward velocity of 3 ft/s
x'(0) = 3
Then, at the first initial condition:
[tex]x_c (0) = c_1 e^{-2\sqrt{2} *0} + c_2 (0) e^{-2\sqrt{2} *0}[/tex]
[tex]0= c_1 e^{0} + 0[/tex]
[tex]0= c_1[/tex]
At the second initial condition;
[tex]x' = -2 \sqrt{2} c_1 e^{-2 \sqrt{2} t } -2 \sqrt{2} c_2 t e^{-2 \sqrt{2} t } + c_2 e^{-2 \sqrt{2} t}[/tex]
where;
x'(0) = 3
[tex]x' (0) = -2 \sqrt{2} c_1 e^{-2 \sqrt{2}* 0 } -2 \sqrt{2} c_2 (0) e^{-2 \sqrt{2} *0 } + c_2 e^{-2 \sqrt{2} *0}[/tex]
[tex]3 = -2 \sqrt{2} * 0 *e^0 - 0 + c_2 e^0[/tex]
[tex]3 = 0 + c_2[/tex]
[tex]3 = c_2[/tex]
Replacing in the constraints, the equation of the motion is:
[tex]\mathbf{x = 3te ^{-2 \sqrt{2t}}}[/tex]