Respuesta :
Answer:
a) The position vector of P is [tex]\vec P =(0, 2,4)[/tex].
b) The distance vector from P to Q is [tex]\overrightarrow{PQ} = (-3,-1,1)[/tex].
c) The distance between P and Q is [tex]\|\overrightarrow{PQ}\|=\sqrt{11}[/tex].
d) A vector parallel to PQ with magnitude of 10 is [tex]\vec v = \left(-\frac{30\sqrt{11}}{11},-\frac{10\sqrt{11}}{11}, \frac{10\sqrt{11}}{11} \right)[/tex].
Explanation:
a) The position vector of a point is the vector displacement from the origin to the location of the point. That is:
[tex]\vec P = (0,2,4)-(0,0,0)[/tex]
[tex]\vec P = (0-0, 2-0, 4-0)[/tex]
[tex]\vec P =(0, 2,4)[/tex]
The position vector of P is [tex]\vec P =(0, 2,4)[/tex].
b) First, we calculate the position vector of point Q:
[tex]\vec Q = (-3,1,5)-(0,0,0)[/tex]
[tex]\vec Q = (-3-0,1-0,5-0)[/tex]
[tex]\vec Q =(-3,1,5)[/tex]
The distance vector from P to Q is define by the following vectorial expression:
[tex]\overrightarrow{PQ} = \vec Q - \vec P[/tex] (1)
[tex]\overrightarrow{PQ} = (-3,1,5)-(0,2,4)[/tex]
[tex]\overrightarrow{PQ} =(-3-0,1-2,5-4)[/tex]
[tex]\overrightarrow{PQ} = (-3,-1,1)[/tex]
The distance vector from P to Q is [tex]\overrightarrow{PQ} = (-3,-1,1)[/tex].
c) There are two approaches to calculate the distance between P and Q:
First Method - Pythagorean Theorem:
[tex]\|\overrightarrow{PQ}\| = \sqrt{(-3)^{2}+(-1)^{2}+1^{2}}[/tex]
[tex]\|\overrightarrow{PQ}\|=\sqrt{11}[/tex]
Second Method - Dot Product:
[tex]\|\overrightarrow{PQ}\| = \sqrt{\overrightarrow{PQ}\,\bullet\,\overrightarrow{PQ}}[/tex] (2)
[tex]\|\overrightarrow{PQ}\| = \sqrt{(-3,-1,1)\,\bullet (-3,-1,1)}[/tex]
[tex]\|\overrightarrow{PQ}\|=\sqrt{11}[/tex]
The distance between P and Q is [tex]\|\overrightarrow{PQ}\|=\sqrt{11}[/tex].
d) To determine a vector parallel to PQ with a given magnitude is determined by the following expression:
[tex]\vec v = \frac{k}{\|\overrightarrow{PQ}\|} \cdot \overrightarrow{PQ}[/tex] (3)
Where [tex]k[/tex] is the scale factor.
If we know that [tex]\overrightarrow{PQ} = (-3,-1,1)[/tex], [tex]\|\overrightarrow{PQ}\|=\sqrt{11}[/tex] and [tex]k = 10[/tex], then the vector is:
[tex]\vec v = \frac{10}{\sqrt{11}}\cdot (-3,-1,1)[/tex]
[tex]\vec v = \left(-\frac{30}{\sqrt{11}},-\frac{10}{\sqrt{11}},\frac{10}{\sqrt{11}}\right)[/tex]
[tex]\vec v = \left(-\frac{30\sqrt{11}}{11},-\frac{10\sqrt{11}}{11}, \frac{10\sqrt{11}}{11} \right)[/tex]
A vector parallel to PQ with magnitude of 10 is [tex]\vec v = \left(-\frac{30\sqrt{11}}{11},-\frac{10\sqrt{11}}{11}, \frac{10\sqrt{11}}{11} \right)[/tex].