Respuesta :
Answer:
These are tough, you need a strategy and the formula to go with it, use the point slope formula { y-y1=m(x-x1) } where m = slope and (x1,y1 ) are the points from one of the given points.
find m .. then plug in your point to your formula ... as follows
Step-by-step explanation:
given: (x1,y1)=(1,5) and (x2,y2)=(9,1)
m = y2-y2 / x2- x1
m = 1-5 / 9-1
m = -4 / 8
m = -1/2
use the give point (1,5) and plug in with the slope you just solved for
y-y1 = m (x-x1)
y-5 = -1/2 (x -1)
y-5 = -1/2x + 1/2
y = -1/2x +5 1/2
above is the slope intercept form y = mx +b :) see?
as a side note.. notice that either point (1,5) or (9,1) gets the same slope intercept equation? when it's plugged in, so just use which ever one seems easier to you.
Answer:
This is the point-slope form.
[tex]y - 5 = - \frac{1}{2} (x - 1)[/tex]
Step-by-step explanation:
Let's find the slope first. Remember that:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1} [/tex]
Let's find the slope now.
[tex]m = \frac{1 - 5}{9 - 1} = \frac{ - 4}{ \: \: \: 8} = - \frac{1}{2} [/tex]
-----------------------------------------------------------
Done. Remember that point-slope form is:
[tex]y - y_1 = m(x - x_1)[/tex]
All we have to do now is plug in.
[tex]y - 5 = - \frac{1}{2} (x - 1)[/tex]
And we are now done!
