A block of ice has a square top and bottom and rectangular sides. At a certain point in
time, the square top and bottom each have a length of 30 cm, which are decreasing at a
rate of 2 cm/h. At the same time, the height of the ice block is 20 cm and decreasing at
3 cm/h. How fast is the ice melting?

Respuesta :

Space

Answer:

[tex]\frac{dV}{dt} = 360 \ cm^3/h[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

Geometry

  • Volume of a Rectangular Prism: V = lwh

Calculus

Derivatives

Derivative Notation

Differentiating with respect to time

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

Step 1: Define

[tex]l = 30 \ cm\\w = l\\\frac{dl}{dt} = 2 \ cm/h\\h = 20 \ cm\\\frac{dh}{dt} = 3 \ cm/h[/tex]

Step 2: Differentiate

  1. Rewrite [VRP]:                                                                                                 [tex]V = l^2h[/tex]
  2. Differentiate [Basic Power Rule]:                                                                         [tex]\frac{dV}{dt} = 2l\frac{dl}{dt} \frac{dh}{dt}[/tex]

Step 3: Solve for Rate

  1. Substitute:                                                                                                           [tex]\frac{dV}{dt} = 2(30 \ cm)(2 \ cm/h)(3 \ cm/h)[/tex]
  2. Multiply:                                                                                                               [tex]\frac{dV}{dt} = 360 \ cm^3/h[/tex]

Here this tells us that our volume is decreasing (ice melting) at a rate of 360 cm³ per hour.

ACCESS MORE
EDU ACCESS