Answer:
The value is [tex]u_x = 597 \ m/s[/tex]
Explanation:
From the question we are told that
The distance of the target from the riffle is [tex]d = 40 \ m[/tex]
The height at which the bullet hit the target is [tex]y = 2.2 \ cm = 0.022 \ m[/tex]
Considering the vertical motion
Generally from kinematic equations we have that
[tex]y = u_y t + \frac{1}{2} * gt^2[/tex]
At the initial stage the velocity is zero i.e [tex]u_y = 0 \ m/s[/tex]
=> [tex]0.022 = 0 * t + \frac{1}{2} * 9.8 t^2[/tex]
=> [tex]t = 0.067 \ s[/tex]
Generally the velocity of the bullet when it leaves the riffle is mathematically represented as
[tex]u_x = \frac{ d}{t}[/tex]
=> [tex]u_x = \frac{40 }{ 0.067 }[/tex]
=> [tex]u_x = 597 \ m/s[/tex]