Respuesta :

Answer:

v' = 8

Explanation:

Given:

Speed v = 4 m/s

Find:

New compressed speed

Computation:

1/2(k)(x)² = 1/2(m)(v)²

v = √kx²/m = 4

If x become double

v' = √k(2x)²/m

v' = 2√kx²/m

v' = 2(4)

v' = 8

The ball's speed will be "8 m/s".

According to the question,

  • Speed, v = 4 m/s

As we know,

→ [tex]\frac{1}{2}kx^2 = \frac{1}{2}mv^2[/tex]

→       [tex]v = \sqrt{\frac{kx^2}{m} }[/tex]

           [tex]= 4[/tex]

then,

→ [tex]v' = \sqrt{\frac{k(2x)^2}{m} }[/tex]

By substituting the values, we get

       [tex]= 2 \sqrt{\frac{kx^2}{m} }[/tex]

       [tex]= 2\times 4[/tex]

       [tex]= 8 \ m/s[/tex]

Thus the response above is appropriate.

Learn more about speed here:

https://brainly.com/question/12530569

ACCESS MORE
EDU ACCESS