Solution :
Magnetic field at the centre due to [tex]$I_P$[/tex] :
[tex]$B_1 = \frac{\mu_0 I_P}{2 \pi d}$[/tex]
[tex]$B_1 = \frac{4 \pi \times 10^{-7} \times 0.2}{2 \pi d}$[/tex]
[tex]$B_1 =10^{-7} \ T$[/tex]
Its direction will be downwards in the plane of the paper.
Magnetic field at the centre due to [tex]$I_Q$[/tex] :
[tex]$B_2 = \frac{\mu_0 I_Q}{2 \pi d}$[/tex]
[tex]$B_2 = \frac{4 \pi \times 10^{-7} \times 0.6}{2 \pi \times 0.8}$[/tex]
[tex]$B_2 =1.5 \times 10^{-7} \ T$[/tex]
Its direction will be upwards in the plane of the paper
Magnetic field due to the coil:
[tex]$B_3 = \frac{\mu_0 I_{coil}}{2 r}$[/tex]
[tex]$B_3 = \frac{4 \pi \times 10^{-7} \times 0.5}{2 \times 0.2}$[/tex]
[tex]$B_3 =3.14 \times 10^{-7} \ T$[/tex]
Its direction will be rightwards.
Now the resultant of the magnetic field at the centre.
[tex]$B_{net} = \sqrt{(B_2 -B_1)^2+B^2_3}$[/tex]
[tex]$B_{net} = \sqrt{(0.5 \times 10^{-7})^2+(3.14 \times 10^{-7})^2}$[/tex]
[tex]$B_{net} = 3.18 \times 10^{-7} \ T$[/tex]
Now the direction ,
[tex]$\tan \theta = \frac{B_2-B_1}{B_3}$[/tex]
[tex]$\tan \theta = \frac{0.5 \times 10^{-7}}{3.14 \times 10^{-7}}$[/tex]
Therefore [tex]$\theta = 9^\circ$[/tex] (from right to upward)