Respuesta :
Let s be the submarine and x be the current.
x + s = 25
x - s = 16
Add the two equations together to get:
2x = 41
Divide both sides by 2:
x = 41/2
x = 20.5
The speed of the submarine is 20.5 knots
The current would be 25 - 20.5 = 4.5 knots.
Answer:
[tex]speed \: of \: the \: current \: is \to \boxed{4 .5 \: knots }\\ and \: the \\ \: speed \: of \: the \: submarine \: in \: still \: water \: is \: \to \boxed{20.5 \: knots}[/tex]
Step-by-step explanation:
[tex]if \: submarine \: is \: with \: current \: = 25 \: knots \\ if \: submarine \:is \: against \: current \: = 16\: knots \\ let \: the \: submarine \: speed= \: s_{s} \\ let \: the \: currents \: speed= \: s_{c} \\ \boxed{ \underline{hence }}\to \\ s_{s} + s_{c} = 25........(1)\\ s_{s} - s_{c} = 16........(2) \\ you \: can \: now \: make \: a ny\: of \: the \: variables \: \\ the \: subject \: of \: the \: relation....(lets \: choose \: s_{s} \: in \: eq....1 \: ) \\ s_{s} = 25 - s_{c} .....(3 )\: \\ now \: equate \: it \: into \: eq....(2)\\ \\ (25 - s_{c}) -s_{c} = 16 \\ 2s_{c} = 25 - 16 \\ \boxed{s_{c} = \frac{9}{2 } = 4.5 \: knots} \\ \\ to \: find \: s_{s} \: we \: \: substitute\: s_{c} \: into \: eq...3\\ s_{s} = 25 - s_{c} = 25 - 4.5 \\ \boxed{s_{s} = 20.5 \: knots}[/tex]
♨Rage♨