If f\left(x\right)=\mid x\midf ( x ) =∣ x ∣, then what is the new function g\left(x\right)g ( x ) when f\left(x\right)f ( x ) is translated 3 units down, followed by a vertical stretch of 2? Group of answer choices

Respuesta :

Answer:

[tex]g(x) = 2 (|x| - 3)[/tex]

Step-by-step explanation:

Given

[tex]f\left(x\right)=\mid x\mid[/tex]

Translation = 3 units down

Vertical stretch of 2 to give g(x)

Required

[tex]g\left(x\right)[/tex]

3 units down translation

A function is translated down as follows:

[tex]h(x) = f(x) - k[/tex]

Where k is the number of units.

So:

[tex]h(x) = f(x) - k[/tex]

[tex]h(x) = |x| - 3[/tex]

Vertical stretch of 2

A function is vertically stretched as follows;

[tex]g(x) = ah(x)[/tex]

Where a is the units stretched.

In this case:

[tex]a = 2[/tex]

So:

[tex]g(x) = ah(x)[/tex]

[tex]g(x) = 2 * (|x| - 3)[/tex]

[tex]g(x) = 2 (|x| - 3)[/tex]

ACCESS MORE