Hello! :)
[tex]y = -\frac{cos^{4}(x)}{4} + C[/tex]
Use u-substitution to solve for the indefinite integral:
[tex]\int cos^{3}(x)sin(x)dx[/tex]
Allow "u" to be the expression with an exponent:
[tex]u = cos(x)\\\\du = -sin(x)dx[/tex]
[tex]-du = sin(x)dx[/tex]
In the integral, we are missing a negative symbol (du = -sin(x)), so we can adjust the integral to accommodate this.
Substitute "u" for cos(x) and du for -sin(x):
[tex]-\int u^{3}du[/tex]
Use the integral power rule to solve:
[tex]\int x^{n} = \frac{x^{n + 1}}{n + 1}[/tex]
[tex]-\int u^{3}du = -[\frac{u^{4}}{4} ][/tex]
Add the constant "C" as this is an indefinite integral:
[tex]= -[\frac{u^{4}}{4} ] + C[/tex]
Substitute in the value of u (cos(x)) into the equation:
[tex]= -\frac{cos^{4}(x)}{4} + C[/tex]
And you're done!