Answer: The volume of the diver's at the same depth, at a temperature of 21.0°C and a pressure of 141.20 kPa is 1.66 L
Explanation:
The combined gas equation is,
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1[/tex] = initial pressure of gas = 101.30 kPa
[tex]P_2[/tex] = final pressure of gas = 141.20 kPa
[tex]V_1[/tex] = initial volume of gas = 2.40 L
[tex]V_2[/tex] = final volume of gas = ?
[tex]T_1[/tex] = initial temperature of gas = [tex]32.0^0C=(32+273)K=305K[/tex]
[tex]T_2[/tex] = final temperature of gas = [tex]21.0^0C=(21+273)K=294K[/tex]
Now put all the given values in the above equation, we get:
[tex]\frac{101.30\times 2.40}{305}=\frac{141.20\times V_2}{294}[/tex]
[tex]V_2=1.66L[/tex]
The volume of the diver's at the same depth, at a temperature of 21.0°C and a pressure of 141.20 kPa is 1.66 L