Respuesta :

Space

Answer:

s = -1

r = 2

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

Algebra I

  • Solving systems of equations using substitution/elimination

Step-by-step explanation:

Step 1: Define Systems

2r + 8s = -4

7r = -6s + 8

Step 2: Rewrite Systems

2r + 8s = -4

  1. Factor:                                               2(r + 4s) = -4
  2. Divide 2 on both sides:                    r + 4s = -2
  3. Subtract 4s on both sides:               r = -4s - 2
  4. Multiply -7 on both sides:                 -7r = 28s + 14

Step 3: Redefine Systems

-7r = 28s + 14

7r = -6s + 8

Step 4: Solve for s

Elimination

  1. Combine equations:                     0 = 22s + 22
  2. Isolate s term:                                -22 = 22s
  3. Isolate s:                                         -1 = s
  4. Rewrite:                                          s = -1

Step 5: Solve for r

  1. Define equations:                    2r + 8s = -4
  2. Substitute in s:                         2r + 8(-1) = -4
  3. Multiply:                                    2r - 8 = -4
  4. Isolate r term:                           2r = 4
  5. Isolate r:                                    r = 2

Answer:

r = 2, s = - 1

Step-by-step explanation:

Given the 2 equations

2r + 8s = - 4 → (1)

7r = - 6s + 8 ( add 6s to both sides )

7r + 6s = 8 → (2)

Multiplying (1) by 7 and (2) by - 2, then adding will eliminate the r- term

14r + 56s = - 28 → (3)

- 14r - 12s = - 16 → (4)

Add (3) and (4) term by term to eliminate r , that is

44s = - 44 ( divide both sides by 44 )

s = - 1

Substitute s = - 1 into either of the 2 equations and solve for r

Substituting into (1)

2r + 8(- 1) = - 4

2r - 8 = - 4 ( add 8 to both sides )

2r = 4 ( divide both sides by 2 )

r = 2

solution is r = 2 , s = - 1

ACCESS MORE