Respuesta :
Answer:
Max Value: x = 400
General Formulas and Concepts:
Algebra I
- Domain is the set of x-values that can be inputted into function f(x)
Calculus
- Antiderivatives
- Integral Property: [tex]\int {cf(x)} \, dx = c\int {f(x)} \, dx[/tex]
- Integration Method: U-Substitution
- [Integration] Reverse Power Rule: [tex]\int {x^n} \, dx = \frac{x^{n+1}}{n+1} + C[/tex]
Step-by-step explanation:
Step 1: Define
[tex]f(x) = \frac{1}{\sqrt{800-2x} }[/tex]
Step 2: Identify Variables
Using U-Substitution, we set variables in order to integrate.
[tex]u = 800-2x\\du = -2dx[/tex]
Step 3: Integrate
- Define: [tex]\int {f(x)} \, dx[/tex]
- Substitute: [tex]\int {\frac{1}{\sqrt{800-2x} } } \, dx[/tex]
- [Integral] Int Property: [tex]-\frac{1}{2} \int {\frac{-2}{\sqrt{800-2x} } } \, dx[/tex]
- [Integral] U-Sub: [tex]-\frac{1}{2} \int {\frac{1}{\sqrt{u} } } \, du[/tex]
- [Integral] Rewrite: [tex]-\frac{1}{2} \int {u^{-\frac{1}{2} }} \, du[/tex]
- [Integral - Evaluate] Reverse Power Rule: [tex]-\frac{1}{2}(2\sqrt{u}) + C[/tex]
- Simplify: [tex]-\sqrt{u} + C[/tex]
- Back-Substitute: [tex]-\sqrt{800-2x} + C[/tex]
- Factor: [tex]-\sqrt{-2(x - 400)} + C[/tex]
Step 4: Identify Domain
We know from a real number line that we cannot have imaginary numbers. Therefore, we cannot have any negatives under the square root.
Our domain for our integrated function would then have to be (-∞, 400]. Anything past 400 would give us an imaginary number.