Respuesta :

Part (a)

Focus on triangle PSQ. We have

angle P = 52

side PQ = 6.8

side SQ = 5.4

Use of the law of sines to determine angle S

sin(S)/PQ = sin(P)/SQ

sin(S)/(6.8) = sin(52)/(5.4)

sin(S) = 6.8*sin(52)/(5.4)

sin(S) = 0.99230983787513

S = arcsin(0.99230983787513)

S = 82.889762826274

Which is approximate

------------

Use this to find angle Q. Again we're only focusing on triangle PSQ.

P+S+Q = 180

Q = 180-P-S

Q = 180-52-82.889762826274

Q = 45.110237173726

Which is also approximate.

A more specific name for this angle is angle PQS, which will be useful later in part (b).

------------

Now find the area of triangle PSQ

area of triangle = 0.5*(side1)*(side2)*sin(included angle)

area of triangle PSQ = 0.5*(PQ)*(SQ)*sin(angle Q)

area of triangle PSQ = 0.5*(6.8)*(5.4)*sin(45.110237173726)

area of triangle PSQ = 13.0074347717966

------------

Next we'll use the fact that RS:SP is 2:1.

This means RS is twice as long as SP. Consequently, this means the area of triangle RSQ is twice that of the area of triangle PSQ. It might help to rotate the diagram so that line PSR is horizontal and Q is above this horizontal line.

We found

area of triangle PSQ = 13.0074347717966

So,

area of triangle RSQ = 2*(area of triangle PSQ)

area of triangle RSQ = 2*13.0074347717966

area of triangle RSQ = 26.0148695435932

------------

We're onto the last step. Add up the smaller triangular areas we found

area of triangle PQR = (area of triangle PSQ)+(area of triangle RSQ)

area of triangle PQR = (13.0074347717966)+(26.0148695435932)

area of triangle PQR = 39.0223043153899

------------

Answer: 39.0223043153899

This value is approximate. Round however you need to.

===========================================

Part (b)

Focus on triangle PSQ. Let's find the length of PS.

We'll use the value of angle Q to determine this length.

We'll use the law of sines

sin(Q)/(PS) = sin(P)/(SQ)

sin(45.110237173726)/(PS) = sin(52)/(5.4)

5.4*sin(45.110237173726) = PS*sin(52)

PS = 5.4*sin(45.110237173726)/sin(52)

PS = 4.8549034284642

Because RS is twice as long as PS, we know that

RS = 2*PS = 2*4.8549034284642 = 9.7098068569284

So,

PR = RS+PS

PR = 9.7098068569284 + 4.8549034284642

PR = 14.5647102853927

-------------

Next we use the law of cosines to find RQ

Focus on triangle PQR

c^2 = a^2 + b^2 - 2ab*cos(C)

(RQ)^2 = (PR)^2 + (PQ)^2 - 2(PR)*(PQ)*cos(P)

(RQ)^2 = (14.5647102853927)^2 + (6.8)^2 - 2(14.5647102853927)*(6.8)*cos(52)

(RQ)^2 = 136.420523798282

RQ = sqrt(136.420523798282)

RQ = 11.6799196828694

--------------

We'll use the law of sines to find angle R of triangle PQR

sin(R)/PQ = sin(P)/RQ

sin(R)/6.8 = sin(52)/11.6799196828694

sin(R) = 6.8*sin(52)/11.6799196828694

sin(R) = 0.4587765387107

R = arcsin(0.4587765387107)

R = 27.3081879220073

--------------

This leads to

P+Q+R = 180

Q = 180-P-R

Q = 180-52-27.3081879220073

Q = 100.691812077992

This is the measure of angle PQR

subtract off angle PQS found back in part (a)

angle SQR = (anglePQR) - (anglePQS)

angle SQR = (100.691812077992) - (45.110237173726)

angle SQR = 55.581574904266

--------------

Answer: 55.581574904266

This value is approximate. Round however you need to.