Respuesta :
Answer:
(7, - 3 ) and (- [tex]\frac{5}{3}[/tex], [tex]\frac{17}{3}[/tex] )
Step-by-step explanation:
Given the 2 equations
y = 4 - x → (1)
x² + 2y² = 67 → (2)
Substitute y = 4 - x into (2)
x² + 2(4 - x)² = 67 ← expand and simplify left side
x² + 2(16 - 8x + x²) = 67
x² + 32- 16x + 2x² = 67
3x² - 16x + 32 = 67 ( subtract 67 from both sides )
3x² - 16x - 35 = 0 ← in standard form
(x - 7)(3x + 5) = 0 ← in factored form
Equate each factor to zero and solve for x
x - 7 = 0 ⇒ x = 7
3x + 5 = 0 ⇒ 3x = - 5 ⇒ x = - [tex]\frac{5}{3}[/tex]
Substitute these values into (1) for corresponding values of y
x = 7 : y = 4 - 7 = - 3 ⇒ (7, - 3 )
x = - [tex]\frac{5}{3}[/tex] : y = 4 + [tex]\frac{5}{3}[/tex] = [tex]\frac{17}{3}[/tex] ⇒ (- [tex]\frac{5}{3}[/tex], [tex]\frac{17}{3}[/tex] )
solutions are (7, - 3 ) and (- [tex]\frac{5}{3}[/tex], [tex]\frac{17}{3}[/tex] )
The solution of the equations are [tex]x=7[/tex] and [tex]x=-1.67[/tex]
System of equations:
The given system of equations are,
[tex]y=4-x\\\\x^{2} +2y^{2} =67[/tex]
Substitute value of y in second equation;
[tex]x^{2} +2(4-x)^{2} =67\\\\x^{2} +2(16+x^{2} -8x)=67\\\\x^{2} +32+2x^{2} -16x=67\\\\3x^{2} -16x-35=0\\\\x=\frac{16\pm\sqrt{256+420} }{6}\\ \\x=7, -1.67[/tex]
The solution of the equations are [tex]x=7[/tex] and [tex]x=-1.67[/tex]
Learn more about the system of equations here:
https://brainly.com/question/13729904