Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the rules of exponents

[tex]a^{m}[/tex] × [tex]a^{n}[/tex] ⇔ [tex]a^{(m+n)}[/tex]

[tex](a^m)^{n}[/tex] = [tex]a^{mn}[/tex]

[tex]a^{-m}[/tex] ⇔ [tex]\frac{1}{a^{m} }[/tex]

Thus

[tex]4^{3x-2}[/tex]

= [tex]4^{3x}[/tex] × [tex]4^{-2}[/tex]

= [tex](4^3)^{x}[/tex] × [tex]4^{-2}[/tex]

= [tex]64^{x}[/tex] × [tex]\frac{1}{4^2}[/tex]

= [tex]\frac{64^{x} }{16}[/tex] ← as required

ACCESS MORE