Step-by-step explanation:
Hey there!
The points of line AB are; (-1,-4) and (2,11).
Note:
~ Use double point formula.
[tex](y - y1) = \frac{y2 - y1}{x2 - x1} (x - x1)[/tex]
~ Keep all values.
[tex](y + 4) = \frac{11 + 4}{2 + 1} (x + 1)[/tex]
~ Simplify it.
[tex]y + 4 = \frac{15}{3} (x + 1)[/tex]
[tex]y + 4 = 5x + 5[/tex]
[tex]5x - y + 1 = 0[/tex]
Therefore this is the equation of line AB.
Now, Finding the equation of line CD.
Given;
The points of line CD are; (1,1) and (4,10).
~ Using formula.
[tex](y - y1) = \frac{y2 - y1}{x2 - x1}(x - x1) [/tex]
~ Keep all values.
[tex](y - 1) = \frac{10 - 1}{4 - 1} (x - 1)[/tex]
~ Simplify it.
[tex]y - 1 = 3 x - 3[/tex]
[tex]3x - y - 2 = 0[/tex]
Therefore, 3x - y- 2 = 0 is the eqaution of line CD.
Use condition of parallel lines.
m1= m2
Slope of equation (i)
[tex]m1 = \frac{ - coeff. \: of \: x}{coeff \: of \: y} [/tex]
[tex]m1 = \frac{ - 5}{ - 1} [/tex]
Therefore, m1 = 5
Slope of second equation.
[tex]m2 = \frac{ - coeff \: .of \: x}{coeff \: .of \: y} [/tex]
[tex]m2 = \frac{ - 3}{ - 1} [/tex]
Therefore, m2 = 3.
Now, m1≠m2.
So, the lies are not parallel.
Check for perpendicular.
m1*m2= -1
3*5≠-1.
Therefore, they aren't perpendicular too.
So, they are neither.
Hope it helps...