Answer:
[tex](\frac{x}{y})^{-4} * (\frac{y}{x})^8 = (\frac{y}{x})^{12[/tex]
Step-by-step explanation:
Given
[tex](\frac{x}{y})^{-4} * (\frac{y}{x})^8[/tex]
Required
Determine the solution to this
[tex](\frac{x}{y})^{-4} * (\frac{y}{x})^8[/tex]
In law of incides:
[tex]\frac{a}{b} = \frac{b}{a}^{-1}[/tex]
This implies that:
[tex](\frac{x}{y})^{-4} * (\frac{y}{x})^8[/tex] is equivalent to:
[tex](\frac{y}{x})^{-(-4)} * (\frac{y}{x})^8[/tex]
[tex](\frac{y}{x})^{4} * (\frac{y}{x})^8[/tex]
Apply first law of indices:
[tex](\frac{y}{x})^{4+8[/tex]
[tex](\frac{y}{x})^{12[/tex]
Hence:
[tex](\frac{x}{y})^{-4} * (\frac{y}{x})^8 = (\frac{y}{x})^{12[/tex]