Respuesta :

Answer:

[tex](\frac{x}{y})^{-4} * (\frac{y}{x})^8 = (\frac{y}{x})^{12[/tex]

Step-by-step explanation:

Given

[tex](\frac{x}{y})^{-4} * (\frac{y}{x})^8[/tex]

Required

Determine the solution to this

[tex](\frac{x}{y})^{-4} * (\frac{y}{x})^8[/tex]

In law of incides:

[tex]\frac{a}{b} = \frac{b}{a}^{-1}[/tex]

This implies that:

[tex](\frac{x}{y})^{-4} * (\frac{y}{x})^8[/tex] is equivalent to:

[tex](\frac{y}{x})^{-(-4)} * (\frac{y}{x})^8[/tex]

[tex](\frac{y}{x})^{4} * (\frac{y}{x})^8[/tex]

Apply first law of indices:

[tex](\frac{y}{x})^{4+8[/tex]

[tex](\frac{y}{x})^{12[/tex]

Hence:

[tex](\frac{x}{y})^{-4} * (\frac{y}{x})^8 = (\frac{y}{x})^{12[/tex]