Answer:
Approximately 11 feet.
Step-by-step explanation:
Let the length of the third side of the triangle be represented by x. Applying Cosine rule, we have:
[tex]c^{2}[/tex] = [tex]a^{2}[/tex] + [tex]b^{2}[/tex] - 2abCos C
⇒ [tex]x^{2}[/tex] = [tex]8^{2}[/tex] + [tex]12^{2}[/tex] - 2(8 x 12) Cos[tex]65^{o}[/tex]
= 64 + 144 - 192 x 0.42262
= 208 - 81.143
= 126.857
x = [tex]\sqrt{126.857}[/tex]
= 11.2631
x ≅ 11
The length of the third side of the triangle is approximately 11 feet.