Given:
Point is T(-3,8).
To find:
The coordinates of T' after [tex]R(y-axis)\circ R(x-axis)[/tex].
Solution:
We know that, [tex]R(y-axis)\circ R(x-axis)[/tex] means the figure reflected across the x-axis then reflected across y-axis.
If a figure reflected across x-axis, then
[tex](x,y)\to (x,-y)[/tex]
[tex]T(-3,8)\to T_1(-3,-8)[/tex]
If a figure reflected across y-axis, then
[tex](x,y)\to (-x,y)[/tex]
[tex]T_1(-3,-8)\to T'(-(-3),-8)[/tex]
[tex]T_1(-3,-8)\to T'(3,-8)[/tex]
Therefore, the required point is T'(3,-8).