Respuesta :

Perimeter of ΔABC is 12.41 units.

From the picture attached,

  • ΔABC is a right triangle
  • m(AC) = 5 units
  • m(∠C) = 90°
  • m∠A = 22°

Since, cosθ = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex] and sinθ = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

For angle A,

Adjacent side = AC = 5 units

Opposite side = BC

and Hypotenuse = AB

By substituting the values in the cosine ratio,

cos(22°) = [tex]\frac{5}{AB}[/tex]

AB = [tex]\frac{5}{\text{cos}(22^{\circ})}[/tex]

      = 5.39

Since, sinθ = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

sin(22°) = [tex]\frac{BC}{5.39}[/tex]

BC = 5.39[sin(22°)]

     = 2.02

Since perimeter of the given triangle ABC = AB + BC + AC

By substituting the measures of all sides in the expression of the perimeter,

Perimeter = 5.39 + 2.02 + 5

                 = 12.41 units.

         Therefore, perimeter of the given triangle is 12.41 units.

Learn more,

https://brainly.com/question/5993308