Given:
[tex]\dfrac{2x-3}{x-4}=\dfrac{2}{3}[/tex]
To find:
The value of x.
Solution:
We have,
[tex]\dfrac{2x-3}{x-4}=\dfrac{2}{3}[/tex]
By cross multiplication, we get
[tex]3(2x-3)=2(x-4)[/tex]
[tex]6x-9=2x-8[/tex]
Isolating variable terms, we get
[tex]6x-2x=9-8[/tex]
[tex]4x=1[/tex]
Divide both sides by 4.
[tex]x=\dfrac{1}{4}[/tex]
[tex]x=0.25[/tex]
Therefore, the solution of the given equation is x = 0.25.