Two sides of a triangle have measures 3 ft and 6 ft. Also, these sides form a vertex whose angle measures 60 degrees. Calculate the missing attributes of the triangle.

Respuesta :

Answer:

A. The length of the third side is approximately 5 feet.

B. A = [tex]88^{o}[/tex], B = [tex]60^{o}[/tex] and C = [tex]32^{o}[/tex].

Step-by-step explanation:

Let the triangle be ABC. Given two sides and an included angle, let us apply the cosine rule to determine the third length.

A. Let side a = 6 feet and c = 3 feet, thus;

[tex]b^{2}[/tex] = [tex]a^{2}[/tex] + [tex]c^{2}[/tex] - 2ac Cos B

  = [tex]6^{2}[/tex] + [tex]3^{2}[/tex] - 2(6 x 3) Cos [tex]60^{o}[/tex]

  = 36 + 9 - 36 x 0.5

  = 45 - 18

[tex]b^{2}[/tex] = 27

b = [tex]\sqrt{27}[/tex]

  = 5.1962

b  = 5.2 feet

b ≅ 5 feet

The length of the third side is approximately 5 feet.

B. Given that B = [tex]60^{o}[/tex], then let us apply the Sine rule to determined the measure of A.

[tex]\frac{a}{SinA}[/tex] = [tex]\frac{b}{SinB}[/tex]

So that,

[tex]\frac{6}{Sin A}[/tex] = [tex]\frac{5.2}{Sin60^{o} }[/tex]

Sin A = [tex]\frac{0.886*6}{5.2}[/tex]

Sin A = 0.99923

A = [tex]Sin^{-1}[/tex] 0.99923

  = 87.75

A ≅ [tex]88^{o}[/tex]

Since the sum of angle in a triangle = [tex]180^{o}[/tex].

Then,

A + B + C = [tex]180^{o}[/tex]

[tex]88^{o}[/tex] + [tex]60^{o}[/tex] + C = [tex]180^{o}[/tex]

[tex]148^{o}[/tex] + C = [tex]180^{o}[/tex]

C = [tex]180^{o}[/tex] - [tex]148^{o}[/tex]

     = [tex]32^{o}[/tex]

C = [tex]32^{o}[/tex]

Thus,

A = [tex]88^{o}[/tex], B = [tex]60^{o}[/tex] and C = [tex]32^{o}[/tex].