Respuesta :
Answer:
[tex]f(x) = \frac{x^4}{12} - sin(x) + 3x + 4[/tex]
General Formulas and Concepts:
Calculus
- Antiderivatives
- Integration Constant C
- [Int Rule] Reverse Power Rule: [tex]\int {x^n} \, dx = \frac{x^{n+1}}{n+1} + C[/tex]
- Integration Property 1: [tex]\int {cf(x)} \, dx = c\int {f(x)} \, dx[/tex]
- Integration Property 2: [tex]\int {f(x)+g(x)} \, dx = \int {f(x)} \, dx + \int {g(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
f"(x) = x² + sin(x)
Condition f'(0) = 2
Condition f(0) = 4
Step 2: Integrate Pt. 1
- Set up: [tex]f'(x) = \int {f"(x)} \, dx[/tex]
- Substitute: [tex]f'(x) = \int [{x^2 + sin(x)}] \, dx[/tex]
- Rewrite [Int Property 2]: [tex]f'(x) = \int {x^2} \, dx + \int {sin(x)} \, dx[/tex]
- Integrate [Reverse Power Rule/Trig]: [tex]f'(x) = \frac{x^3}{3} - cos(x) + C[/tex]
Step 3: Find f'(x)
Use the given condition to find the differential equation.
- Substitute: [tex]f'(0) = \frac{0^3}{3} - cos(0) + C[/tex]
- Substitute: [tex]2 = \frac{0^3}{3} - cos(0) + C[/tex]
- Evaluate: [tex]2 = 0 - 1 + C[/tex]
- Solve: [tex]3 = C[/tex]
- Define: [tex]f'(x) = \frac{x^3}{3} - cos(x) + 3[/tex]
Step 4: Integrate Pt. 2
- Set up: [tex]f(x) = \int {f'(x)} \, dx[/tex]
- Substitute: [tex]f(x) = \int [{\frac{x^3}{3} - cos(x) + 3}] \, dx[/tex]
- Rewrite [Int Property 2]: [tex]f(x) = \int {\frac{x^3}{3} } \, dx + \int {-cos(x)} \, dx + \int {3} \, dx[/tex]
- Rewrite [Int Property 1]: [tex]f(x) = \frac{1}{3} \int {x^3} \, dx - \int {cos(x)} \, dx + \int {3} \, dx[/tex]
- Integrate {Reverse Power Rule/Trig]: [tex]f(x) = \frac{1}{3}(\frac{x^4}{4} ) - sin(x) + 3x + C[/tex]
- Simplify: [tex]f(x) = \frac{x^4}{12} - sin(x) + 3x + C[/tex]
Step 5: Find f(x)
Use the given condition to find the equation.
- Substitute: [tex]f(0) = \frac{0^4}{12} - sin(0) + 3(0) + C[/tex]
- Substitute: [tex]4 = \frac{0^4}{12} - sin(0) + 3(0) + C[/tex]
- Evaluate: [tex]4 = 0 - 0 + 0+ C[/tex]
- Solve: [tex]4 = C[/tex]
- Define: [tex]f(x) = \frac{x^4}{12} - sin(x) + 3x + 4[/tex]