If f ( x ) f(x) is an exponential function where f ( − 5 ) = 26 f(−5)=26 and f ( 3 ) = 54 f(3)=54, then find the value of f ( 0.5 ) f(0.5), to the nearest hundredth.

Respuesta :

Answer:

[tex]f(0.5) = 42.55[/tex]

Step-by-step explanation:

Given

[tex]f(-5) = 26[/tex]

[tex]f(3) = 54[/tex]

Required

Find f(0.5)

An exponential function is of the form:

[tex]y=ab^x[/tex]

For: [tex]f(-5) = 26[/tex]

[tex]x = -5[/tex]    [tex]y = 26[/tex]

So, we have:

[tex]26 = ab^{-5}[/tex] --- (1)

For [tex]f(3) = 54[/tex]

[tex]x = 3[/tex]     [tex]y =54[/tex]

So, we have:

[tex]54 = ab^3[/tex] --- (2)

Divide (2) by (1)

[tex]\frac{54}{26} = \frac{ab^3}{ab^{-5}}[/tex]

[tex]\frac{54}{26} = \frac{b^3}{b^{-5}}[/tex]

Apply law of indices

[tex]\frac{54}{26} = b^{3-(-5)}[/tex]

[tex]\frac{54}{26} = b^{3+5}[/tex]

[tex]\frac{54}{26} = b^{8}[/tex]

[tex]2.07692307692= b^{8}[/tex]

Take 8th roots of both sides

[tex]b = \sqrt[8]{2.07692307692}[/tex]

[tex]b = 1.09566440144[/tex]

[tex]b = 1.10[/tex]

Substitute 1.10 for b in [tex]54 = ab^3[/tex]

[tex]54 = a * 1.10^3[/tex]

[tex]54 = a * 1.331[/tex]

Solve for a

[tex]a = \frac{54}{1.331}[/tex]

[tex]a = 40.57[/tex]

To solve for f(0.5), we have:

[tex]y=ab^x[/tex]

[tex]f(0.5) = 40.57 * 1.10 ^ {0.5}[/tex]

[tex]f(0.5) = 40.57 * 1.04880884817[/tex]

[tex]f(0.5) = 42.5501749703[/tex]

[tex]f(0.5) = 42.55[/tex] (approximated)

ACCESS MORE