Answer:
F. [tex]x=\frac{5}{2}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
- Standard Form: ax² + bx + c = 0
- Quadratic Formula: [tex]x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]
Step-by-step explanation:
Step 1: Define
[tex]x^2 - 5x + \frac{25}{4} = 0[/tex]
Step 2: Identify Variables
[tex]a = 1\\b = -5\\c = \frac{25}{4}[/tex]
Step 3: Find roots
- Substitute [QF]: [tex]x=\frac{5\pm\sqrt{(-5)^2-4(1)(\frac{25}{4} )} }{2(1)}[/tex]
- Exponent: [tex]x=\frac{5\pm\sqrt{25-4(1)(\frac{25}{4} )} }{2(1)}[/tex]
- Multiply: [tex]x=\frac{5\pm\sqrt{25-25} }{2}[/tex]
- Subtract: [tex]x=\frac{5\pm\sqrt{0} }{2}[/tex]
- Evaluate: [tex]x=\frac{5}{2}[/tex]