Respuesta :

Answer:

Option D

Step-by-step explanation:

We have to find the value of the composite function (h o k)(2).

Since, (h o k)(x) = h[k(x)]

(h o k)(2) = h[k(2)]

From the picture attached,

At x = 2

k(2) = (-2)

Therefore, h[k(2)] = h(-2)

Since, h(x) = [tex]\frac{3}{x+1}[/tex]

Therefore, h(-2) = [tex]\frac{3}{-2+1}[/tex]

                          = -3

(h o k)(2) = -3 is the answer.

Option (D) is the correct option.

ACCESS MORE