What is the x-coordinate of the point that divides the directed line segment from J to K into a ratio of 2:5? X = (StartFraction m Over m + n EndFraction) (x 2 minus x 1) + x 1 –4 –2 2 4

Respuesta :

Answer:

-2

Step-by-step explanation:

The equation of a segment C(x, y) that divides the line segment AB with endpoints A([tex]x_1,y_1[/tex]) and B([tex]x_2,y_2[/tex]) in the ratio m:n is:

[tex]x=\frac{m}{n+m} (x_2-x_1)+x_1\\\\y=\frac{m }{n+m} (y_2-y_1)+y_1[/tex]

A point (x, y) divides the directed line segment from J(-6, -2) to K(8, -9) into a ratio of 2:5. Hence:

[tex]x=\frac{2}{2+5}(8-(-6))+(-6)\\\\x=4-6\\\\x=-2\\\\[/tex]

Also:

[tex]y=\frac{2}{2+5}(-9-(-2))+(-2)\\\\y=-2-2\\\\y=-4[/tex]

The point is (-2, -4)

Ver imagen raphealnwobi

Answer:

B) -2

Step-by-step explanation:

ACCESS MORE