Answer:
The value is [tex]P_2 = 40.54 \ psla[/tex]
Explanation:
From the question we are told that
The initial pressure is [tex]P_1 = 14\ psla[/tex]
The initial temperature is [tex]T_1 = 50 \ F = (50 - 32) * [\frac{5}{9} ] + 273 = 283 \ K[/tex]
The final temperature is [tex]T_2 = 320 \ F = (320 - 32) * [\frac{5}{9} ] + 273 =433 \ K[/tex]
Generally the equation for adiabatic process is mathematically represented as
[tex]PT^{\frac{\gamma}{1- \gamma} } = Constant[/tex]
=> [tex]P_1T_1^{\frac{\gamma}{1- \gamma} } = P_2T_2^{\frac{\gamma}{1- \gamma} }[/tex]
Generally for a monoatomic gas [tex]\gamma = \frac{5}{3}[/tex]
So
[tex]14 * 283^{\frac{\frac{5}{3} }{1- [\frac{5}{3} ]} } =P_2 * 433^{\frac{\frac{5}{3} }{1- [\frac{5}{3} ]} }[/tex]
=> [tex]14 * 283^{-2.5} =P_2 * 433^{-2.5}[/tex]
=> [tex]P_2 = 40.54 \ psla[/tex]