Respuesta :
Answer:
The rate of change of the height is 0.021 meters per minute
Step-by-step explanation:
From the formula
[tex]V = \frac{1}{3}\pi r^{2}h[/tex]
Differentiate the equation with respect to time t, such that
[tex]\frac{d}{dt} (V) = \frac{d}{dt} (\frac{1}{3}\pi r^{2}h)[/tex]
[tex]\frac{dV}{dt} = \frac{1}{3}\pi \frac{d}{dt} (r^{2}h)[/tex]
To differentiate the product,
Let r² = u, so that
[tex]\frac{dV}{dt} = \frac{1}{3}\pi \frac{d}{dt} (uh)[/tex]
Then, using product rule
[tex]\frac{dV}{dt} = \frac{1}{3}\pi [u\frac{dh}{dt} + h\frac{du}{dt}][/tex]
Since [tex]u = r^{2}[/tex]
Then, [tex]\frac{du}{dr} = 2r[/tex]
Using the Chain's rule
[tex]\frac{du}{dt} = \frac{du}{dr} \times \frac{dr}{dt}[/tex]
∴ [tex]\frac{dV}{dt} = \frac{1}{3}\pi [u\frac{dh}{dt} + h(\frac{du}{dr} \times \frac{dr}{dt})][/tex]
Then,
[tex]\frac{dV}{dt} = \frac{1}{3}\pi [r^{2} \frac{dh}{dt} + h(2r) \frac{dr}{dt}][/tex]
Now,
From the question
[tex]\frac{dr}{dt} = 7 m/min[/tex]
[tex]\frac{dV}{dt} = 236 m^{3}/min[/tex]
At the instant when [tex]r = 99 m[/tex]
and [tex]V = 180 m^{3}[/tex]
We will determine the value of h, using
[tex]V = \frac{1}{3}\pi r^{2}h[/tex]
[tex]180 = \frac{1}{3}\pi (99)^{2}h[/tex]
[tex]180 \times 3 = 9801\pi h[/tex]
[tex]h =\frac{540}{9801\pi }[/tex]
[tex]h =\frac{20}{363\pi }[/tex]
Now, Putting the parameters into the equation
[tex]\frac{dV}{dt} = \frac{1}{3}\pi [r^{2} \frac{dh}{dt} + h(2r) \frac{dr}{dt}][/tex]
[tex]236 = \frac{1}{3}\pi [(99)^{2} \frac{dh}{dt} + (\frac{20}{363\pi }) (2(99)) (7)][/tex]
[tex]236 \times 3 = \pi [9801 \frac{dh}{dt} + (\frac{20}{363\pi }) 1386][/tex]
[tex]708 = 9801\pi \frac{dh}{dt} + \frac{27720}{363}[/tex]
[tex]708 = 30790.75 \frac{dh}{dt} + 76.36[/tex]
[tex]708 - 76.36 = 30790.75\frac{dh}{dt}[/tex]
[tex]631.64 = 30790.75\frac{dh}{dt}[/tex]
[tex]\frac{dh}{dt}= \frac{631.64}{30790.75}[/tex]
[tex]\frac{dh}{dt} = 0.021 m/min[/tex]
Hence, the rate of change of the height is 0.021 meters per minute.