Complete the equation of the line through (-9,7)(−9,7)left parenthesis, minus, 9, comma, 7, right parenthesis and (-6,-3)(−6,−3)left parenthesis, minus, 6, comma, minus, 3, right parenthesis.

Respuesta :

Answer:

[tex]y = -\frac{10}{3}x -23[/tex]

Step-by-step explanation:

Given

[tex](x_1,y_1) = (-9,7)[/tex]

[tex](x_2,y_2) = (-6,-3)[/tex]

Required

Determine the line equation

We start by calculating the slope (m)

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

Where:

[tex](x_1,y_1) = (-9,7)[/tex]

[tex](x_2,y_2) = (-6,-3)[/tex]

So, we have:

[tex]m = \frac{-3- 7}{-6 - (-9)}[/tex]

[tex]m = \frac{-3- 7}{-6 +9}[/tex]

[tex]m = \frac{-10}{3}[/tex]

[tex]m = -\frac{10}{3}[/tex]

The equation is then calculated using:

[tex]y - y_1 = m(x - x_1)[/tex] ---- Point slope form of an equation

Where:

[tex]m = -\frac{10}{3}[/tex]

[tex](x_1,y_1) = (-9,7)[/tex]

[tex]y - y_1 = m(x - x_1)[/tex] becomes

[tex]y - 7 = -\frac{10}{3}(x - (-9))[/tex]

[tex]y - 7 = -\frac{10}{3}(x +9)[/tex]

Open bracket:

[tex]y - 7 = -\frac{10}{3}x -\frac{10}{3}*9[/tex]

[tex]y - 7 = -\frac{10}{3}x -10*3[/tex]

[tex]y - 7 = -\frac{10}{3}x -30[/tex]

Collect Like Terms

[tex]y = -\frac{10}{3}x -30 + 7[/tex]

[tex]y = -\frac{10}{3}x -23[/tex]

Hence:

The equation is: [tex]y = -\frac{10}{3}x -23[/tex]

ACCESS MORE