Calculating the land area:
[tex]\bold{= (200\ m) \times (250\ m) = 50000\ m^2}[/tex]
Calculating the construction for the 1 Bedroom set:
[tex]= \bold{ (\frac{50000}{ \text{1 bedroom area}}) \times \text{(number of bedrooms + 1)}}\\\\ =\bold{ \frac{50000}{50} \times (1+1)} \\\\ = \bold{\frac{5000}{5} \times (2)} \\\\= \bold{2000\ people}[/tex]
Calculating the construction for the 2 Bedroom set:
[tex]= \bold{ (\frac{50000}{ \text{2 bedroom area}}) \times \text{(number of bedrooms + 1)}}\\\\ =\bold{ \frac{50000}{70} \times (2+1)} \\\\ = \bold{\frac{5000}{7} \times (3)} \\\\= \bold{2142 \ people}[/tex]
Calculating the construction for the 3 Bedroom set:
[tex]= \bold{ (\frac{50000}{ \text{3 bedroom area}}) \times \text{(number of bedrooms + 1)}}\\\\ =\bold{ \frac{50000}{84} \times (3+1)} \\\\ = \bold{\frac{50000}{84} \times (4)} \\\\= \bold{2380 \ people}[/tex]
Calculating the construction for the 4 Bedroom set:
[tex]= \bold{ (\frac{50000}{ \text{4 bedroom area}}) \times \text{(number of bedrooms + 1)}}\\\\ =\bold{ \frac{50000}{94} \times (4+1)} \\\\ = \bold{\frac{50000}{94} \times (5)} \\\\= \bold{2659 \ people}[/tex]
Calculating the construction for the 5 Bedroom set:
[tex]= \bold{ (\frac{50000}{ \text{5 bedroom area}}) \times \text{(number of bedrooms + 1)}}\\\\ =\bold{ \frac{50000}{118} \times (5+1)} \\\\ = \bold{\frac{50000}{118} \times (6)} \\\\= \bold{2542 \ people}[/tex]
In this scenario, the maximum number of persons accommodated is "2659", which would be the case for a 4-bedrooms set, therefore the final answer is "2659".
Learn more:
brainly.com/question/20410187