Respuesta :
Answer:
The coordinates of the point C that minimizes AC + BC are (-20, 0) or (4, 0)
Step-by-step explanation:
The given coordinates of the points A and B are A(1, 6) and B(8, 8)
The location of the point C = The x-axis
Therefore;
The coordinates of the point C = (x, 0)
The length of the segment AC = √((1 - x)² + (6 - 0)²) = √((1 - x)² + 6²)
The length of the segment BC = √((8 - x)² + (8 - 0)²) = √((8 - x)² + 8²)
At minimum distance of AC + BC, we have;
d(√((1 - x)² + 6²) +√((8 - x)² + 8²))/dx = 0 = (1 - x) × 2 × (0.5 - 1)× (√((1 - x)² + 6²)^(0.5 - 1) + (8 - x) × 2 × (0.5 - 1)× √((8 - x)² + 8²)^(0.5 - 1)
∴ d(√((1 - x)² + 6²) +√((8 - x)² + 8²))/dx = 0 = -(1 - x)/√((1 - x)² + 6²) - (8 - x)/√((8 - x)² + 8²)
-(1 - x)/√((1 - x)² + 6²) = (8 - x)/√((8 - x)² + 8²)
(8 - x)·√((1 - x)² + 6²) = -(1 - x)·√((8 - x)² + 8²)
Squaring both sides gives;
(8 - x)²·((1 - x)² + 6²) = (1 - x)²·((8 - x)² + 8²)
Expanding, using an online tool, we get;
x⁴ - 18·x³ + 133·x² -720·x + 2368 = x⁴ - 18·x³ + 161·x² - 272·x + 128
Which gives;
(161 - 133)·x² - (272 - 720)·x + 128 - 2368 = 28·x² + 448·x - 2240 = 0
Dividing by 28 gives;
x² + 16·x - 80 = 0
(x + 20)·(x - 4) = 0
Therefore, x = -20 or x = 4
The coordinates of the point C that minimizes AC + BC are (-20, 0) or (4, 0)
The coordinates of a point is the position of the point, on the coordinate plane.
The point C that minimizes AC + BC are (-20, 0) and (4, 0)
The given parameters are:
[tex]\mathbf{A = (1,6)}[/tex]
[tex]\mathbf{B = (8,8)}[/tex]
From the question, we understand that point C is on the x-axis.
This means that:
[tex]\mathbf{C = (x,0)}[/tex]
Calculate segments AC and BC using the following distance formula
[tex]\mathbf{d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}}[/tex]
So, we have:
[tex]\mathbf{AC = \sqrt{(1 - x)^2 + (6 - 0)^2}}[/tex]
[tex]\mathbf{AC = \sqrt{(1 - x)^2 + 6^2}}[/tex]
[tex]\mathbf{BC = \sqrt{(8 - x)^2 + (8 -0)^2}}[/tex]
[tex]\mathbf{BC = \sqrt{(8 - x)^2 + 8 ^2}}[/tex]
Add both distance
[tex]\mathbf{AB + BC = \sqrt{(1 - x)^2 + 6^2} + \sqrt{(8 - x)^2 + 8^2}}[/tex]
Differentiate, to calculate the minimum distance
[tex]\mathbf{d' = (1 - x) \times 2 \times (0.5 - 1) \times ((1 - x)^2 + 6^2)^({0.5 - 1}) + (8 - x) \times 2 \times (0.5 - 1) \times ((8 - x)^2} + 8^2))}^{(0.5 - 1)} }[/tex]
Simplify
[tex]\mathbf{d' = -\frac{1 - x}{\sqrt{(1 - x)^2 + 6^2}}- \frac{8 - x}{\sqrt{(8 - x)^2 + 8^2}}}[/tex]
Set to 0
[tex]\mathbf{ -\frac{1 - x}{\sqrt{(1 - x)^2 + 6^2}} - \frac{8 - x}{\sqrt{(8 - x)^2 + 8^2}} = 0}[/tex]
Rewrite as:
[tex]\mathbf{ -\frac{1 - x}{\sqrt{(1 - x)^2 + 6^2}} = \frac{8 - x}{\sqrt{(8 - x)^2 + 8^2}} }[/tex]
Cross multiply
[tex]\mathbf{(8 - x) \times\sqrt{(1 - x)\² + 6\²} = -(1 - x) \times\sqrt{(8 - x)\² + 8\²}}[/tex]
Square both sides
[tex]\mathbf{(8 - x)^2 \times (1 - x)\² + 6\² = (-(1 - x))^2 \times (8 - x)\² + 8\²}[/tex]
[tex]\mathbf{(8 - x)^2 \times (1 - x)\² + 6\² = (1 - x)^2 \times (8 - x)\² + 8\²}[/tex]
Expand
[tex]\mathbf{x^4 - 18x^3 + 133x^2 -720x + 2368 = x^4 - 18x^3 + 161x^2 - 272x + 128}[/tex]
Evaluate like terms
[tex]\mathbf{133x^2 -720x + 2368 = 161x^2 - 272x + 128}[/tex]
Collect like terms
[tex]\mahbf{161x^2 - 133x^2 - 272x + 720x + 128 - 2368 = 0}[/tex]
[tex]\mathbf{28x^2 + 448x - 2240 = 0}[/tex]
Factor out 28
[tex]\mathbf{28(x^2 + 16x - 80) = 0}[/tex]
Divide through by 28
[tex]\mathbf{x^2 + 16x - 80 = 0}[/tex]
Expand
[tex]\mathbf{x^2 + 20x - 4x - 80 = 0}[/tex]
Factorize
[tex]\mathbf{x(x + 20) + 4(x + 20) = 0}[/tex]
Factor out x + 20
[tex]\mathbf{(x + 20)(x - 4) = 0}[/tex]
Solve for x
[tex]\mathbf{x =- 20\ or\ x = 4}[/tex]
Hence, the point C that minimizes AC + BC are (-20, 0) and (4, 0)
Read more about coordinate points a:
https://brainly.com/question/18154638