Respuesta :

Answer:

[tex]y = 4x-1[/tex]

Step-by-step explanation:

Required:

Determine the equation of the linear function

First, we need to determine the slope (m) as follows:

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

Where

[tex](x_1,y_1) = (-2,-9)[/tex]

[tex](x_2,y_2) = (4,15)[/tex]

Substitute these values in [tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]m = \frac{15- (-9)}{4 - (-2)}[/tex]

[tex]m = \frac{24}{6}[/tex]

[tex]m =4[/tex]

The equation is then calculated using:

[tex]y - y_1 = m(x - x_1)[/tex]

This gives:

[tex]y -(-9) = 4(x - (-2))[/tex]

[tex]y + 9 = 4(x + 2)[/tex]

[tex]y + 9 = 4x + 8[/tex]

Make y the subject

[tex]y = 4x + 8 - 9[/tex]

[tex]y = 4x-1[/tex]