Question:
Consider the following quadratic function. f(x) = −9x^2 + 16x − 13.
Identify the vertex
Answer:
[tex](\frac{8}{9},-\frac{53}{9})[/tex]
Step-by-step explanation:
Given
[tex]f(x) = -9x^2 + 16x - 13[/tex]
Required
Identify the vertex
The vertex of an equation is represented as:
[tex](x,f(x)) = (\frac{-b}{2a},f(x))[/tex]
i.e.
[tex]x = -\frac{b}{2a}[/tex]
In [tex]f(x) = -9x^2 + 16x - 13[/tex]
[tex]a= -9[/tex] [tex]b = 16[/tex] [tex]c = -13[/tex]
[tex]x = -\frac{b}{2a}[/tex] becomes
[tex]x = -\frac{16}{2 * -9}[/tex]
[tex]x = \frac{16}{2 * 9}[/tex]
[tex]x = \frac{8}{9}[/tex]
Substitute 8/9 for x in [tex]f(x) = -9x^2 + 16x - 13[/tex]
[tex]f(8/9) = -9(8/9)^2 + 16(8/9) - 13[/tex]
[tex]f(8/9) = -9(64/81)+ (16*8/9) - 13[/tex]
[tex]f(8/9) = -64/9 + (128/9) - 13[/tex]
Take LCM
[tex]f(\frac{8}{9}) = \frac{-64 + 128 -117}{9}[/tex]
[tex]f(\frac{8}{9}) = \frac{-53}{9}[/tex]
[tex]f(\frac{8}{9}) = -\frac{53}{9}[/tex]
Hence, the vertex is:
[tex](\frac{8}{9},-\frac{53}{9})[/tex]