Respuesta :

Answer:

AD = 15

Step-by-step explanation:

Based on the Pythagoras Theorem, the longest side of a right-angled triangle is: [tex]\sqrt{a^{2}+b^{2}}[/tex] where a and b are the legs of the triangle.

In triangle BDC, we can put in the formula to find BD.

85 = [tex]\sqrt{77^{2}+BD^{2}}[/tex]

85² = 77² + BD²

7225 = 5929 + BD²

BD² = 7225 - 5929

       = 1296

BD = [tex]\sqrt{1296}[/tex]

BD = 36

In triangle ABD, we can put in the formula to find AD.

39 = [tex]\sqrt{36^{2}+AD^{2}}[/tex]

39² = 36² + AD²

1521 = 1296 + AD²

AD² = 1521 - 1296

       = 225

AD = [tex]\sqrt{225}[/tex]

AD = 15

ACCESS MORE