Given:
[tex](g\circ f)(a)=|a|-2[/tex]
To find:
The functions f(x) and g(x).
Solution:
We know that,
[tex](g\circ f)(a)=g[f(a)][/tex]
If [tex]f(a)=a^2-4[/tex] and [tex]g(a)=\sqrt{a}[/tex], then
[tex](g\circ f)(a)=g[a^2-4][/tex]
[tex](g\circ f)(a)=\sqrt{a^2-4}\neq |a|-2[/tex]
Option A is incorrect.
If [tex]f(a)=\dfrac{1}{2}a-1[/tex] and [tex]g(a)=2a-2[/tex], then
[tex](g\circ f)(a)=g[\dfrac{1}{2}a-1][/tex]
[tex](g\circ f)(a)=2(\dfrac{1}{2}a-1)-2[/tex]
[tex](g\circ f)(a)=a-2-2[/tex]
[tex](g\circ f)(a)=a-4\neq |a|-2[/tex]
Option B is incorrect.
If [tex]f(a)=5+a^2[/tex] and [tex]g(a)=\sqrt{a-5}-2[/tex], then
[tex](g\circ f)(a)=g[5+a^2][/tex]
[tex](g\circ f)(a)=\sqrt{5+a^2-5}-2[/tex]
[tex](g\circ f)(a)=\sqrt{a^2}-2[/tex]
[tex](g\circ f)(a)=|a|-2[/tex]
Option C is correct.
If [tex]f(a)=3-3a[/tex] and [tex]g(a)=4a-5[/tex], then
[tex](g\circ f)(a)=g[3-3a][/tex]
[tex](g\circ f)(a)=4(3-3a)-5[/tex]
[tex](g\circ f)(a)=12-12a-5[/tex]
[tex](g\circ f)(a)=7-12x\neq |a|-2[/tex]
Option D is incorrect.
Therefore, the correct option is C.