Respuesta :

Answer:

[tex]F' = (-3,-3)[/tex]

[tex]G' = (-3,3)[/tex]

[tex]H' = (6,-3)[/tex]

Step-by-step explanation:

Given

The attached graph

[tex]Scale\ Factor = 1\frac{1}{2}[/tex]

Required

Determine the coordinates of F'G'H'

First, we need to get the coordinate of F, G and H from the graph

[tex]F = (-2,-2)[/tex]

[tex]G = (-2,2)[/tex]

[tex]H = (4,-2)[/tex]

The dilated coordinate is then calculated as:

[tex](FGH)' = (FGH) * Scale\ Factor[/tex]

This gives:

[tex]F' = (-2,-2) * 1\frac{1}{2}[/tex]

[tex]F' = (-2* 1\frac{1}{2},-2* 1\frac{1}{2})[/tex]

[tex]F' = (-3,-3)[/tex]

[tex]G' = (-2,2) * 1\frac{1}{2}[/tex]

[tex]G' = (-2 * 1\frac{1}{2},2 * 1\frac{1}{2})[/tex]

[tex]G' = (-3,3)[/tex]

[tex]H' = (4,-2) * 1\frac{1}{2}[/tex]

[tex]H' = (4 * 1\frac{1}{2},-2 * 1\frac{1}{2})[/tex]

[tex]H' = (6,-3)[/tex]

ACCESS MORE