Respuesta :

Answer:

D. [tex] \frac{22x + 48}{x^2 - 36} [/tex]

Step-by-step explanation:

Given:

[tex] \frac{15}{x - 6} + \frac{7}{x + 6} [/tex]

Required:

Find its equivalent expression

Solution:

Add both fractions

Thus,

[tex] \frac{15}{x - 6} + \frac{7}{x + 6} [/tex]

[tex] \frac{15(x + 6) + 7(x - 6)}{x^2 - 36} [/tex]

[tex] \frac{15x + 90 + 7x - 42}{x^2 - 36} [/tex]

[tex] \frac{15x + 7x + 90 - 42}{x^2 - 36} [/tex]

[tex] \frac{22x + 48}{x^2 - 36} [/tex]

Therefore,

[tex] \frac{15}{x - 6} + \frac{7}{x + 6} = \frac{22x + 48}{x^2 - 36} [/tex]