Respuesta :

Space

Answer:

x = 10 + √389, y = -10 + √389 // x = 29.7231, y = 9.72308

or

x = 10 - √389, y = -10 - √389 // x = -9.72308, y = -29.7231

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

Algebra I

  • Solving systems of equations using substitution/elimination
  • Standard Form: ax² + bx + c = 0
  • Quadratic Formula: [tex]x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]

Step-by-step explanation:

Step 1: Define Systems

xy = 289

x - y = 20

Step 2: Rewrite Systems

x - y = 20

  1. Subtract x on both sides:                   -y = 20 - x
  2. Divide -1 on both sides:                      y = x - 20

Step 3: Redefine Systems

xy = 289

y = x - 20

Step 4: Solve for x

Substitution

  1. Substitute in y:                    x(x - 20) = 289
  2. Distribute x:                         x² - 20x = 289
  3. Rewrite [SF]:                        x² - 20x - 289 = 0
  4. Define variables:                 a = 1, b = -20, c = -289
  5. Substitute [QF]:                   [tex]x=\frac{20\pm\sqrt{(-20)^2-4(1)(-289)} }{2(1)}[/tex]
  6. Exponents:                          [tex]x=\frac{20\pm\sqrt{400-4(1)(-289)} }{2(1)}[/tex]
  7. Multiply:                               [tex]x=\frac{20\pm\sqrt{400+1156} }{2}[/tex]
  8. Add:                                     [tex]x=\frac{20\pm\sqrt{1556} }{2}[/tex]
  9. Simplify:                               [tex]x=\frac{20\pm 2\sqrt{389} }{2}[/tex]
  10. Factor GCF:                         [tex]x=\frac{2(10\pm \sqrt{389} )}{2}[/tex]
  11. Divide:                                 [tex]x=10\pm \sqrt{389}[/tex]

Step 5: Solve for y

Possibility 1: x = 10 + √389

  1. Define equation:                    x - y = 20
  2. Substitute in x:                       (10 + √389) - y = 20
  3. Isolate y term:                        -y = 20 - (10 + √389)
  4. Isolate y:                                 y = (10 + √389) - 20
  5. Combine like terms:              y = -10 + √389
  6. Evaluate:                                y = 9.72308

Possibility 2: x = 10 - √389

  1. Define equation:                    x - y = 20
  2. Substitute in x:                       (10 - √389) - y = 20
  3. Isolate y term:                        -y = 20 - (10 - √389)
  4. Isolate y:                                 y = (10 - √389) - 20
  5. Combine like terms:              y = -10 - √389
  6. Evaluate:                                y = -29.7231

Step 6: Identify Solutions

Possibility 1:

x = 10 + √389, y = -10 + √389

x = 29.7231, y = 9.72308

Possibility 2:

x = 10 - √389, y = -10 - √389

x = -9.72308, y = -29.7231

ACCESS MORE