Answer:
[tex]B = 74[/tex]
Explanation:
Given
[tex]A=(3x-23)[/tex]
[tex]B=(2x-12)[/tex]
Required
Find B
Since A and B are supplementary, then:
[tex]A + B = 180[/tex]
Substitute values for A and B
[tex]3x - 23 + 2x - 12 = 180[/tex]
Collect Like Terms
[tex]3x + 2x = 180 + 23 + 12[/tex]
[tex]5x = 215[/tex]
Divide through by 5
[tex]\frac{5x = 215}{5}[/tex]
[tex]x = 43[/tex]
Substitute 43 for x in [tex]B=(2x-12)[/tex]
[tex]B = 2*43 - 12[/tex]
[tex]B = 74[/tex]