Respuesta :

Given:

Length of a rectangle = (3x-3)

Width of the rectangle = (2x+1)

To find:

The area of the rectangle.

Solution:

We know that, area of a rectangle is

[tex]Area=Length \times width[/tex]

Putting Length = (3x-3) and width = (2x+1), we get

[tex]Area=(3x-3)\times (2x+1)[/tex]

[tex]Area=(3x-3)(2x+1)[/tex]

Using distributive property, we get

[tex]Area=3x(2x+1)-3(2x+1)[/tex]

[tex]Area=3x(2x)+3x(1)-3(2x)-3(1)[/tex]

[tex]Area=6x^2+3x-6x-3[/tex]

[tex]Area=6x^2-3x-3[/tex]

Therefore, the area of rectangle is [tex](3x-3)(2x+1)\equiv 6x^2-3x-3[/tex] sq. units.

ACCESS MORE