Respuesta :

The required value is [tex]\csc A=\dfrac{5}{4}[/tex].

Important information:

  • [tex]\sec A=\dfrac{5}{3}[/tex]
  • Angle A is in Quadrant I.

We need to find the exact value of csc A.

Trigonometric Ratios:

Formulae used: If angle A is in Quadrant I.

[tex]\cos A=\dfrac{1}{\sec A}[/tex]

[tex]\sin A=\sqrt{1-\cos^2 A}[/tex]

[tex]\csc A=\dfrac{1}{\sin A}[/tex]

Using these formulae, we get

[tex]\cos A=\dfrac{3}{5}[/tex]

And,

[tex]\sin A=\sqrt{1-\left(\dfrac{3}{5}\right)^2}[/tex]

[tex]\sin A=\sqrt{1-\dfrac{9}{25}}[/tex]

[tex]\sin A=\sqrt{\dfrac{16}{25}}[/tex]

[tex]\sin A=\dfrac{4}{5}[/tex]

Now,

[tex]\csc A=\dfrac{1}{\sin A}[/tex]

[tex]\csc A=\dfrac{1}{\frac{4}{5}}[/tex]

[tex]\csc A=\dfrac{5}{4}[/tex]

Thus, the required value is [tex]\csc A=\dfrac{5}{4}[/tex].

Find out more about 'Trigonometric Ratios' here:

https://brainly.com/question/2263794

The required value of cscA is 1.25

Given,

[tex]secA=\frac{5}{3}[/tex]

Trigonometrical ratios:

In the first quadrant, all ratios are positives.

[tex]sin A=\frac{P}{H}[/tex]

And the value of hypotenuse is,

[tex]P=\sqrt{H^2-B^2} \\=\sqrt{5^2-3^2} \\=\sqrt{16}\\ P=4[/tex]

So, the sine A is,

[tex]sinA=\frac{P}{H}\\ =\frac{4}{5}[/tex]

So, the rational denominator is,

[tex]cscA=\frac{H}{P}\\ =\frac{5}{4}\\=1.25[/tex]

Learn More about Trigonometrical ratios:

https://brainly.com/question/24349828