Please help me! Due soon!
The quadratic [tex]3x^2+4x-9[/tex] has two real roots. What is the sum of the squares of these roots? Express your answer as a common fraction in lowest terms.

Please help me Due soon The quadratic tex3x24x9tex has two real roots What is the sum of the squares of these roots Express your answer as a common fraction in class=

Respuesta :

Answer:

70/9

Step-by-step explanation:

We have the quadratic:

[tex]3x^2+4x-9[/tex]

So, let’s find the roots of the quadratic. We will set the expression equal to 0:

[tex]3x^2+4x-9=0[/tex]

Testing for factors, we can see that our quadratic isn’t factorable.

So, we can use the Quadratic Formula. The quadratic formula is given by:

[tex]\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

In this case:

[tex]a=3, b=4,\text{ and } c=-9[/tex]

Therefore, by substitution:

[tex]\displaystyle x=\frac{-(4)\pm\sqrt{(4)^2-4(3)(-9)}}{2(3)}[/tex]

Evaluate:

[tex]\displaystyle x=\frac{-4\pm\sqrt{124}}{6}[/tex]

Simplify the square root:

[tex]\sqrt{124}=\sqrt{4\cdot31}=2\sqrt{31}[/tex]

Hence:

[tex]\displaystyle x=\frac{-4\pm2\sqrt{31}}{6}[/tex]

Reduce:

[tex]\displaystyle x=\frac{-2\pm\sqrt{31}}{3}[/tex]

So, our roots are:

[tex]\displaystyle x_1=\frac{-2+\sqrt{31}}{3}, x_2=\frac{-2-\sqrt{31}}{3}[/tex]

We want to find the sum of the squares of our two roots. So, let’s square each term:

[tex]\displaystyle (x_1)^2=\Big(\frac{-2+\sqrt{31}}{3}\Big)^2[/tex]

Square. For the numerator, we can use the perfect square trinomial patten where:

[tex](a+b)^2=(a^2+2ab+b^2)[/tex]

Therefore:

[tex]\displaystyle (x_1)^2=\Big(\frac{(-2)^2+2(-2)(\sqrt{31})+(\sqrt{31})^2}{9}\Big)[/tex]

Simplify:

[tex]\displaystyle (x_1)^2=\frac{35-4\sqrt{31}}{9}[/tex]

Similarly, for the second root, we will have:

[tex]\displaystyle (x_2)^2=\Big(\frac{-2-\sqrt{31}}{3}\Big)^2[/tex]

So:

[tex]\displaystyle (x_2)^2=\Big(\frac{(-2)^2+2(-2)(-\sqrt{31})+(-\sqrt{31})^2}{9}\Big)[/tex]

Simplify:

[tex]\displaystyle (x_2)^2=\frac{35+4\sqrt{31}}{9}[/tex]

Therefore, our sum will be:

[tex]\displaystyle (x_1)^2+(x_2)^2\\\\ \begin{aligned} &=\frac{35-4\sqrt{31}}{9}+\frac{35+4\sqrt{31}}{9}\\&=\frac{35-4\sqrt{31}+35+4\sqrt{31}}{9}\\&=\frac{70}{9}\end{aligned}[/tex]

Therefore, our final answer is 70/9.

ACCESS MORE