The value of [tex]Cos(A - B)[/tex] will be [tex](\frac{-\sqrt{5} }{5} )[/tex].
What are trigonometric functions ?
Trigonometric functions are the periodic functions which denote the relationship between angle and sides of a right-angled triangle.
We have,
[tex]Sin(A) = \frac{4}{5}[/tex] , [tex]\frac{\pi }{2} < A < \pi[/tex]
[tex]Sin(B) = \frac{-2\sqrt{5} }{5}[/tex] , [tex]\pi < B < \frac{3\pi }{2}[/tex]
So,
Using identity ;
[tex]Cos(A - B)= CosA\ *\ Cos B + Sin A\ *\ Sin B[/tex]
So,
First find [tex]SinB[/tex] and [tex]CosA[/tex];
i.e.
[tex]CosB=\frac{-\sqrt{5} }{5}=\frac{-1}{\sqrt{5} }[/tex], [tex]\pi < B > \frac{3\pi }{2}[/tex]
[tex]CosA=\frac{-3}{5}[/tex], [tex]\frac{\pi }{2} < A > \pi[/tex]
Now,
Substituting values,
[tex]Cos(A - B)= CosA\ *\ Cos B + Sin A\ *\ Sin B[/tex]
[tex]Cos(A - B)= ((\frac{-3}{5})\ *\ \frac{-1}{\sqrt{5}} ) +((\frac{4}{5})\ *\ \frac{-2\sqrt{5} }{5} )[/tex]
Simplify,
[tex]Cos(A - B)= (\frac{3 }{5\sqrt{5}} ) -(\frac{8 }{5\sqrt{5}})[/tex]
[tex]Cos(A - B)= (\frac{-5 }{5\sqrt{5}} )[/tex]
[tex]Cos(A - B)= (\frac{-1 }{\sqrt{5}} )[/tex]
Or we can write
[tex]Cos(A - B)= (\frac{-\sqrt{5} }{5} )[/tex]
Hence, we can say that the value of [tex]Cos(A - B)[/tex] will be [tex](\frac{-\sqrt{5} }{5} )[/tex] which is given in option (b).
To know more about Trigonometric functions click here
https://brainly.com/question/6904750
#SPJ3