Given: Sine (A) = four-fifths, StartFraction pi Over 2 EndFraction < A < Pi and Sine (B) = StartFraction negative 2 StartRoot 5 EndRoot Over 5 EndFraction, pi, Pi < B < StartFraction 3 pi Over 2 EndFraction

What is the value of cos(A – B)?

Negative StartFraction 2 StartRoot 5 EndRoot Over 25 EndFraction
Negative StartFraction StartRoot 5 EndRoot Over 5 EndFraction
StartFraction 2 StartRoot 5 EndRoot Over 5 EndFraction
StartFraction 11 StartRoot 5 EndRoot Over 25 EndFraction

Given Sine A fourfifths StartFraction pi Over 2 EndFraction lt A lt Pi and Sine B StartFraction negative 2 StartRoot 5 EndRoot Over 5 EndFraction pi Pi lt B lt class=

Respuesta :

Answer:

D

Step-by-step explanation:

Did test(edge 2020)

The value of [tex]Cos(A - B)[/tex] will be [tex](\frac{-\sqrt{5} }{5} )[/tex].

What are trigonometric functions ?

Trigonometric functions are  the periodic functions which denote the relationship between angle and sides of a right-angled triangle.

We have,

[tex]Sin(A) = \frac{4}{5}[/tex] ,    [tex]\frac{\pi }{2} < A < \pi[/tex]

[tex]Sin(B) = \frac{-2\sqrt{5} }{5}[/tex] ,   [tex]\pi < B < \frac{3\pi }{2}[/tex]

So,

Using identity ;

[tex]Cos(A - B)= CosA\ *\ Cos B + Sin A\ *\ Sin B[/tex]

So,

First find [tex]SinB[/tex] and [tex]CosA[/tex];

i.e.

[tex]CosB=\frac{-\sqrt{5} }{5}=\frac{-1}{\sqrt{5} }[/tex],   [tex]\pi < B > \frac{3\pi }{2}[/tex]

[tex]CosA=\frac{-3}{5}[/tex],    [tex]\frac{\pi }{2} < A > \pi[/tex]

Now,

Substituting values,

[tex]Cos(A - B)= CosA\ *\ Cos B + Sin A\ *\ Sin B[/tex]

[tex]Cos(A - B)= ((\frac{-3}{5})\ *\ \frac{-1}{\sqrt{5}} ) +((\frac{4}{5})\ *\ \frac{-2\sqrt{5} }{5} )[/tex]

Simplify,

[tex]Cos(A - B)= (\frac{3 }{5\sqrt{5}} ) -(\frac{8 }{5\sqrt{5}})[/tex]

[tex]Cos(A - B)= (\frac{-5 }{5\sqrt{5}} )[/tex]

[tex]Cos(A - B)= (\frac{-1 }{\sqrt{5}} )[/tex]

Or we can write

[tex]Cos(A - B)= (\frac{-\sqrt{5} }{5} )[/tex]

Hence, we can say that the value of [tex]Cos(A - B)[/tex] will be [tex](\frac{-\sqrt{5} }{5} )[/tex] which is given in option (b).

To know more about Trigonometric functions click here

https://brainly.com/question/6904750

#SPJ3

ACCESS MORE