Respuesta :
The value of tan(2x) is -4/3
What is double angle formula for tan?
Let, 'm' be an angle then the double angle formula of tan is,
[tex]tan(2m)=\frac{2~tan(m)}{1-tan^{2}m }[/tex]
For given example,
We have cos(x) = 1/√5 and sin(x) > 0
We know, sin^2(x) + cos^(x) = 1
⇒ sin^2(x) = 1 - (1/√5)^2
⇒ sin^2(x) = 1 - (1/5)
⇒ sin^2(x) = 4/5
⇒ sin(x) = ± 2/√5
But sin(X) > 0
⇒ sin(x) = 2/√5
We know, for any angle Ф,
tan(Ф) = sin(Ф) / cos(Ф)
Hence, tan(x) = sin(x)/cos(x)
tan(x) = (2/√5) / (1/√5)
⇒ tan(x) = 2/1
⇒ tan(x) = 2
Now, using the double angle formula for tan,
[tex]\Rightarrow tan(2x)=\frac{2~tan(x)}{1-tan^{2}x }\\\\\Rightarrow tan(2x)=\frac{2\times 2}{1-(2)^{2}}\\\\ \Rightarrow tan(2x)=\frac{4}{1-4}\\\\ \Rightarrow \bold{tan(2x)=-\frac{4}{3}}[/tex]
Therefore, the value of tan(2x) is -4/3
Learn more about the double angle here:
https://brainly.com/question/15385122
#SPJ2