What is the midpoint of CD?
• (1/2,-5/2)
•(1,-5/2)
•(1/2,-3/2)
•(1,-3/2)
![What is the midpoint of CD 1252 152 1232 132 class=](https://us-static.z-dn.net/files/dd7/595dc6362d0a07dbc44d8e1df4e6c523.png)
Answer:
(1/2,-5/2)
Step-by-step explanation:
[tex] \frac{ - 3 + 4 }{2} = \frac{1}{2} \\ \frac{ - 4 + - 1}{2} = \frac{ - 5}{2} [/tex]
Answer:
[tex]\displaystyle \left(\frac{1}{2},-\frac{5}{2}\right)[/tex]
Step-by-step explanation:
Given a segment defined by the points (x1,y1) and (x2,y2), the midpoint (xm,ym) is calculated as follows:
[tex]\displaystyle x_m=\frac{x_1+x_2}{2}[/tex]
[tex]\displaystyle y_m=\frac{y_1+y_2}{2}[/tex]
The segment CD is defined by the points in graph C(-3,-4) and D(4,-1). The midpoint is:
[tex]\displaystyle x_m=\frac{-3+4}{2}=\frac{1}{2}[/tex]
[tex]\displaystyle x_m=\frac{1}{2}[/tex]
[tex]\displaystyle y_m=\frac{-4-1}{2}=\frac{-5}{2}[/tex]
[tex]\displaystyle y_m=-\frac{5}{2}[/tex]
Thus, the midpoint is:
[tex]\mathbf{\displaystyle \left(\frac{1}{2},-\frac{5}{2}\right)}[/tex]