Answer:
The equation in point-slope form is:
[tex]y-\left(-8\right)=16\left(x-8\right)[/tex]
The equation of the line in slope-intercept form is:
[tex]y=16x-136[/tex]
Step-by-step explanation:
Given the points
(8, -8)
(9, 8)
Finding the slope between (8, -8) and (9, 8)
[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]\left(x_1,\:y_1\right)=\left(8,\:-8\right),\:\left(x_2,\:y_2\right)=\left(9,\:8\right)[/tex]
[tex]m=\frac{8-\left(-8\right)}{9-8}[/tex]
[tex]m=16[/tex]
Point slope form:
[tex]y-y_1=m\left(x-x_1\right)[/tex]
Here:
m is the slope and (x₁, y₁) is the point
substituting the values m = 16 and the point (8, -8) in the point-slope form
[tex]y-y_1=m\left(x-x_1\right)[/tex]
[tex]y-\left(-8\right)=16\left(x-8\right)[/tex]
[tex]y-\left(-8\right)=16\left(x-8\right)[/tex]
now completing the point-slope form equation of the line
[tex]y+8=16\left(x-8\right)[/tex]
subtract 8 from both sides
[tex]y+8-8=16\left(x-8\right)-8[/tex]
[tex]y=16x-136[/tex]
[tex]y=16x-136[/tex]