Respuesta :

Answer:

The equation in point-slope form is:

[tex]y-\left(-8\right)=16\left(x-8\right)[/tex]

The equation of the line in slope-intercept form is:

[tex]y=16x-136[/tex]

Step-by-step explanation:

Given the points

(8, -8)

(9, 8)

Finding the slope between (8, -8) and (9, 8)

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(8,\:-8\right),\:\left(x_2,\:y_2\right)=\left(9,\:8\right)[/tex]

[tex]m=\frac{8-\left(-8\right)}{9-8}[/tex]

[tex]m=16[/tex]

Point slope form:

[tex]y-y_1=m\left(x-x_1\right)[/tex]

Here:

m is the slope  and (x₁, y₁) is the point

substituting the values m = 16 and the point (8, -8)  in the point-slope form

[tex]y-y_1=m\left(x-x_1\right)[/tex]

[tex]y-\left(-8\right)=16\left(x-8\right)[/tex]

  • Thus, the equation in point-slope form is:

[tex]y-\left(-8\right)=16\left(x-8\right)[/tex]

now completing the point-slope form equation of the line

[tex]y+8=16\left(x-8\right)[/tex]

subtract 8 from both sides

[tex]y+8-8=16\left(x-8\right)-8[/tex]

[tex]y=16x-136[/tex]

  • Thus, the equation of the line in slope-intercept form is:

[tex]y=16x-136[/tex]