Find the value of the trigonometric ratio.
9) sin z
![Find the value of the trigonometric ratio 9 sin z class=](https://us-static.z-dn.net/files/dbb/821b2875bd90ab923d6949b538dd6fc5.png)
The value of the trigonometric ratio Sin Z for the given triangle XYZ will be [tex]\frac{3}{5}[/tex], i.e. option C.
The trigonometric ratios are the ratios of sides of two sides of right angled triangle used in trigonometry. Trigonometric ratios are used to find the value of the acute angles in a right triangle when the sides of the triangle are given.
We have,
A right-angled triangle XYZ with the given values,
Angle Y = 90°
And,
YZ = 32, XY = 24 and XZ = 40,
Now,
Using the trigonometric ratios,
i.e.
[tex]Sin Z=\frac{Perpendicular}{Hypotenuse}[/tex]
i.e.
[tex]Sin Z=\frac{XY}{XZ}[/tex]
So,
[tex]Sin Z=\frac{24}{40}[/tex]
On simplifying,
We get,
[tex]Sin Z=\frac{3}{5}[/tex]
So,
The option C is the correct answer for the given triangle find out using trigonometric ratio,
Hence, we can say that the value of the trigonometric ratio Sin Z for the given triangle XYZ will be [tex]\frac{3}{5}[/tex], i.e. option C.
To know more about trigonometric ratios click here
https://brainly.com/question/1201366
#SPJ2